# EMPOWERING VULNERABLE CHILDREN THROUGH AI: A PARTICIPATORY STUDY FROM CENTRAL EUROPE

#### **Abstract**

Children living in residential childcare institutions worldwide face significant barriers to social inclusion, personal development, and educational equity. This article presents findings from the international project Sport, Culture, and Education: Empowering Visegrad's Children for a Brighter Future, which combined non-formal education, cultural expression, and sports to foster inclusion and 21st-century competencies among children in residential childcare. An important innovation of the project was the integrative use of artificial intelligence (AI) to support pedagogical planning, adaptive content creation, and participatory evaluation processes. Employing a participatory action research design and mixed methods, the study involved 68 children and 21 childcare professionals and support workers from Slovakia, the Czech Republic, and a unique group of Ukrainian children temporarily relocated to Poland due to the war. Results show that AI significantly enhanced the quality and individualisation of educational and cultural interventions while also improving the efficiency of data collection and analysis. At the same time, our study highlights critical ethical, linguistic, and contextual challenges to the deployment of AI in these vulnerable populations. The article discusses the implications of AI in the context of residential childcare. It presents evidence-based recommendations for educators, not only in residential childcare settings but also those seeking to employ AI responsibly and effectively in the fields of child welfare and inclusive education.

**Keywords:** Artificial intelligence, inclusive education, residential childcare, social inclusion, participatory action research, digital equity, non-formal education

# 1. Introduction

Children growing up in residential childcare institutions across Central and Eastern Europe, including the Visegrad region, continue to face systemic and multifaceted disadvantages. Despite international conventions and regional commitments to inclusive education, access to quality learning, cultural participation, and social integration remains significantly limited for this vulnerable group (UNICEF, 2023). Institutional care often operates outside the mainstream of educational innovation, resulting in children being socially isolated, emotionally under-supported, and excluded from opportunities that foster self-realisation and civic engagement. While it is beyond question that residential childcare has undergone significant positive transformations in recent years, several challenges persist. One of the persisting challenges lies in integrating elements of artificial intelligence (AI) into the context of residential childcare. Adaptive AI systems, generative educational content, and automated feedback tools hold the potential to personalise support and reduce structural barriers (Holmes, Bialik, & Fadel, 2023; Luckin et al., 2016). However, this potential can only be realised when AI is implemented ethically, inclusively, and with attention to local needs, pedagogical values, and human dignity (Zawacki-Richter et al., 2019).

This article presents findings from the international project Sport, Culture, and Education: Empowering Visegrad's Children for a Brighter Future, conducted in 2025 with support from the International Visegrad Fund. The project engaged 68 children and 21 educators and support workers from Slovakia, the Czech Republic, and a group of Ukrainian children temporarily relocated to Poland. It combined sports, cultural expression, and non-formal education with the innovative use of AI to promote social inclusion and the development of 21st-century competencies in residential care environments. Our research draws on participatory action research and mixed-methods evaluation. Through empirical analysis and critical reflection, we examine how AI technologies can enhance the reach and quality of inclusive educational practices. Our findings provide recommendations for

The article has been submitted for peer review to the international scientific journal *BRAIN*. *Broad Research in Artificial Intelligence and Neuroscience* (ISSN 2067-3957).

researchers and educators seeking to ethically integrate AI into residential childcare settings and enhance the education of children from socially disadvantaged backgrounds.

# 2. Theoretical Background

Residential childcare should not be viewed as a detached or isolated domain unrelated to broader societal structures. It represents a specific and often marginalised segment of the child welfare system designated for children who have experienced adverse childhood events, family breakdown, and various forms of trauma (Alfandari & Taylor, 2023). While notable progress has been made in care standards across Central and Eastern Europe, children living in residential childcare continue to face enduring challenges related to social exclusion, educational underachievement, and limited cultural participation. Our research team has long been engaged in addressing these issues, and our findings have been consistently applied in the practice of residential childcare institutions not only in the Czech Republic but also internationally. Through this work, we have come to understand that residential childcare systems reflect the cultural and policy-specific realities of individual countries (Daněk et al., 2023; Daněk et al., 2024). As previous studies have shown, institutional care often fails to provide opportunities for children to develop in areas such as emotional growth, identity formation, and social integration. This situation reinforces existing systemic inequalities (Bach-Mortensen et al., 2022; Calheiros & Patrício, 2014). Our article does not aim to provide a comprehensive analysis of the residential childcare system. Instead, it focuses on the role of artificial intelligence as a tool for supporting this vulnerable group.

# Artificial Intelligence in Education: Opportunities and Cautions

Within the context of residential childcare, education plays a pivotal role (Calheiros et al., 2014; McCafferty et al., 2025; Garcia-Molsosa et al., 2021). We cannot effectively address the complex challenges faced by children in these environments without access to meaningful and high-quality learning opportunities. Artificial intelligence (AI) has emerged as a transformative force in education over the past few years. AI can provide tools that range from intelligent tutoring systems and automated feedback to generative content creation and adaptive learning platforms (Schultz et al., 2021; Jiang et al., 2024). When implemented within a student-centred educational approach, AI technologies have been shown to support personalisation, enhance learner engagement, and facilitate formative assessment (Hamilton et al., 2021).

At the core of these innovations lies an appreciation of the uniqueness of each learner—an essential foundation of the inclusive education paradigm (Daněk, 2024). For children living at risk of social exclusion, such as children in institutional care, the possibilities of artificial intelligence are a very, very powerful compensatory tool. It can help to satisfy the need for individualised teaching, as well as offer cognitive stimulation and new educational possibilities.

Unfortunately, artificial intelligence has not yet been sufficiently integrated into the daily practice of most childcare institutions. This gap represents a missed opportunity, as AI-driven interventions have the potential to respond flexibly to different educational needs and, given the speed of information processing, can meet these needs.e. Generative tools such as large language models and multimodal AI systems can also support communication, creative self-expression, and learner agency in novel ways (Ouakili, 2025).

We must critically assess these opportunities with a solid understanding of potential risks. Scholars have warned of algorithmic bias, ethical opacity, and the marginalisation of vulnerable groups in the development and deployment of AI systems (Guérin et al., 2025; Jayasekara et al., 2022). In the context of residential childcare, where children are already subject to increased monitoring and reduced autonomy, the implementation of AI requires rigorous ethical safeguards, participatory design frameworks, and strong pedagogical oversight. Without these, there is a risk that AI may reinforce, rather than reduce, existing disparities in access, representation, and voice

(Jie et al., 2024). If AI is to contribute to social justice in education, it must be distributed equitably and tailored to the needs of all learners, including those in residential childcare. Rather than becoming a mechanism of exclusion, AI must be deliberately understood as an instrument of inclusion. AI is an important tool with the ability to be responsive to diversity and sensitive to vulnerability. We see AI as an important part of an inclusive society firmly grounded in the rights and dignity of every child.

## **Pedagogical and Ethical Considerations**

Principles of equity, transparency, and inclusivity must guide the ethical deployment of AI in educational contexts. Leading scholars and international organisations have emphasised the importance of "human-centred AI" systems that respect learner autonomy, respond to developmental and cultural diversity, and enhance rather than replace pedagogical relationships (Donoso et al., 2021). In the context of residential childcare, ethical alignment necessitates a comprehensive view of the child, encompassing not only cognitive learning outcomes but also a wide range of child needs. We can point, for example, to emotional well-being, identity formation, and the development of trust in stable adult figures.

Moreover, AI applications in institutions serving vulnerable children must operate within reflexive, evidence-informed frameworks that prioritise continuous evaluation, stakeholder codesign, and responsiveness to the lived experiences of learners. Our project, described in this article, does not position AI as a self-sufficient solution but rather as a catalyst for inclusive dialogue. We view AI as a tool for creative expression and a pathway to collaborative learning (Amershi, 2019). This approach foregrounds ethical deliberation as a central component of educational innovation. In residential childcare settings, where trust, safety, and relational depth are foundational, any technological intervention must be subject to heightened ethical scrutiny (Kawakami et al., 2022; Boscardin et al., 2024). The risks of surveillance, dehumanisation, or cultural insensitivity are especially acute in such contexts. It is, therefore, imperative to view AI not as a neutral tool but as a sociotechnical construct whose value depends on intentional, child-centred design and implementation (Hamilton et al., 2021). Ethical considerations are not peripheral in residential childcare; they are, in fact, indispensable (UNESCO, 2022).

### 3. Research Context

Our research was conducted as part of the Visegrad Fund-supported project Sport, Culture, and Education: Empowering Visegrad's Children for a Brighter Future. The primary fieldwork took place during a flagship event held in Zlín, Czech Republic, in June 2025. Designed around principles of inclusion, participation, and cultural diversity, the Zlín programme offered a comprehensive and immersive experience for children from residential childcare institutions in the Czech Republic and Slovakia, as well as a delegation of Ukrainian children temporarily relocated to Poland due to the ongoing war.

# **Visegrad Unity Games**

Throughout the day, the Visegrad Unity Games served as the central integrative framework, bringing children together through cooperative, team-based physical activities. Far beyond conventional sports programming, these games were carefully designed to foster intercultural dialogue, empathy, and mutual trust through structured play and movement. They provided a dynamic context in which inclusion could be practised and embodied, not merely discussed. In parallel with the sports programme, our team conducted two professionally curated workshops, each highlighting a different aspect of inclusive development:

Visegrad Skills for Inclusion: Empowering through Education

In this interactive session, we explored the role of education in cultivating civic competencies. Participants engaged in self-evaluation and reflection on their learning trajectories, exchanging good practices from across the Visegrad region and Ukraine. The workshop underscored the importance of soft skills, motivation for lifelong learning, and the development of agency as key ingredients of active citizenship.

### **Cultural Mosaic of the Visegrad Nations**

Focusing on identity, memory, and community, this creative workshop drew upon drama-ineducation techniques, storytelling, and symbolic expression. Children and caregivers explored personal and shared narratives, building intercultural awareness and a sense of belonging within the diverse cultural fabric of the Visegrad region.

Both workshops integrated artificial intelligence as a supportive tool, facilitating personalised content generation, transcription, and thematic analysis of participant reflections, as well as the co-creation of visual materials. These AI applications will be further examined in the following sections as innovative instruments for advancing inclusive education and cultural participation. What unfolded in Zlín was a profoundly interconnected experience in which sport, culture, and education functioned as mutually reinforcing pillars of inclusion. The programme supported not only the physical and cognitive development of all participants. This international event cultivated emotional resilience, cultural self-awareness, and collaborative competence in all the children involved. The Zlín event offered children in residential childcare a rare and meaningful international experience by integrating these domains into a single, holistic environment. In this unique and inclusive universe, children had the opportunity to strengthen their confidence, enrich their sense of identity, and deepen their understanding of social inclusion.

## 4. Research Design and Methodology

Our research team has long worked with a broad spectrum of qualitative research methods. We understand research not as a finite endeavour but as an ongoing process, where the fulfilment of one objective inevitably gives rise to new questions, problems, and avenues for inquiry. The central question guiding our study is:

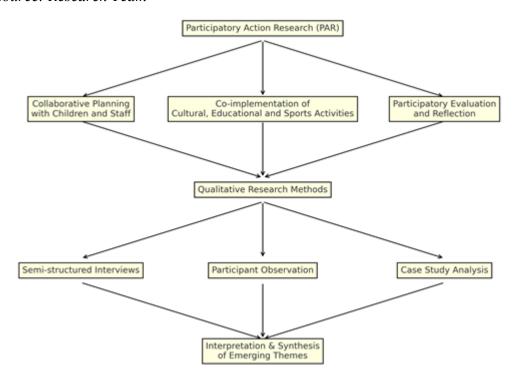
How can artificial intelligence support inclusive education, cultural participation, and personal development among children in residential care?

To answer this overarching question in a responsible and analytically manageable way, we stratified it into three specific sub-questions. Each was carefully constructed to act as a conceptual bridge leading toward a coherent response to the primary research aim. While many themes could have been explored, we prioritised clarity and relevance by formulating the following focused sub-questions:

In what ways can artificial intelligence facilitate communication between children from different cultural backgrounds?

How do current pedagogical staff in Visegrad-region residential childcare institutions perceive the use of AI?

How did children in the target group respond to outputs created with the assistance of AI?


To provide ethically grounded and contextually sensitive responses to these questions—and to help open the field of AI in residential childcare to broader academic and practical reflection—we adopted a participatory action research (PAR) framework (see Figure 1). This decision was based on the fact that our research team remained in sustained, direct contact with the target population throughout the study. Our study thus draws on the tradition of participatory action research, a methodology particularly well-suited to work with marginalised and vulnerable populations, including children in residential care. PAR emphasises collaboration, empowerment, and reflexivity,

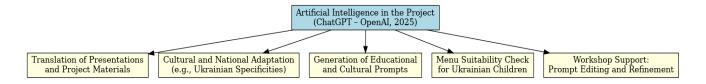
positioning participants not as passive research subjects but as active co-creators of knowledge and change (Baum, 2006; Pyett, 2006; Kemmis, 2006). This approach caused the children and educators to be directly involved in co-designing educational and cultural activities, assessing their outcomes, and reflecting on the ethical and practical implications of artificial intelligence in their environments.

This collaborative structure enabled the research team to anchor interventions in lived experience. Our view from inside enhanced the cultural and educational relevance of the findings. It also fostered ethical vigilance by continually involving children in processes of validation and interpretation. To capture the multifaceted nature of the educational and psychosocial context, the study employed a qualitative design based on multiple complementary methods, including semi-structured interviews, observations and focus groups. This methodological triangulation enabled us to examine the research problem from multiple angles, which is critical for understanding the phenomenon under study (Creswell, 2014; Dawadi et al., 2021).

This approach facilitated the analysis of complex narratives that illuminated children's emotional engagement, sense of agency, and evolving relationships with AI-supported learning environments. The integration of diverse perspectives also enabled a deeper understanding of institutional dynamics. We can work with staff attitudes and the nuanced cultural sensitivities involved in deploying AI in residential childcare.

Figure 1. Participatory Action Research (PAR) framework applied in the project. Source: Research Team




# 5. The Role of Artificial Intelligence in the Project

As previously discussed, artificial intelligence is only gradually making its way into the domain of residential childcare. In this section, we outline the specific components of the project Sport, Culture, and Education: Empowering Visegrad's Children for a Brighter Future that would have been significantly more difficult—or even impossible—to implement without the support of AI technologies. Throughout the project, we employed ChatGPT (OpenAI, 2025) as a support tool for generating a wide range of educational, cultural, and communication materials. These outputs

were not used in a raw or automated manner; instead, all AI-generated content was carefully reviewed, contextually edited, and ethically validated by the research team, following participatory and child-centred research principles. The practical necessity of AI became especially evident during a critical last-minute development. Initially, the project was set to include delegations from all four Visegrad countries. However, at the last moment, teams from Hungary and Poland cancelled their participation. In response, the Polish side arranged for a group of children from a Ukrainian residential care institution—temporarily relocated to Poland due to the ongoing war—to join the programme as replacement participants.

This information reached us late in the evening, just before the event began. Our organising team was left with a minimal window to adapt project materials, educational and cultural activities to this significant change. It was essential to immediately generate new materials that would accommodate the presence of Ukrainian children. AI played a pivotal role in this adaptation process. Within a matter of hours, we were able to translate and localise existing materials, adapt content to Ukrainian cultural realities, validate communication styles to ensure emotional and linguistic sensitivity and generate customised educational prompts for inclusive use (see Figure 2). Without AI, such a rapid, multilingual, and culturally responsive transformation would have required a dedicated team of experts working through the night—an unrealistic scenario given the constraints of time and human resources. The case described here highlights the significant potential of AI to serve as a responsive, context-sensitive tool in projects targeting vulnerable populations. In residential childcare contexts—where staff often operate under severe time pressure and resource limitations—AI can significantly enhance the ability to deliver inclusive, adaptive, and ethically sound programming.

Figure 2. Practical Applications of Artificial Intelligence in the Project. Source: Research Team



# **Translation of Presentations and Project Materials**

One of the most impactful contributions of artificial intelligence within the project was the rapid and effective translation of presentations, workshop outlines, and supporting documents. Given the multinational composition of participants—including children and staff from Slovakia, the Czech Republic, and war-affected Ukrainian regions—ensuring multilingual accessibility was both a logistical and ethical imperative. ChatGPT enabled the generation of accurate and contextually sensitive translations in minutes, significantly reducing the time and resources that would otherwise have been necessary. All translated materials were subsequently reviewed and, where needed, refined by native speakers, who confirmed their linguistic clarity and contextual appropriateness.

This aspect of the project invites a very needed reflection on structural barriers to inclusion in multilingual environments. It is a sobering reality that language proficiency across many post-socialist countries, particularly among professionals working in residential childcare, remains limited despite gradual improvements in recent decades. This gap in language preparedness is especially evident in residential childcare settings, where an increasing number of children come from diverse cultural and linguistic backgrounds. Their language often differs from that of the host country or institution. In this regard, AI constitutes a transformative tool for overcoming linguistic

barriers, not only by enabling immediate translation but also by mediating cultural adaptation and comprehension. In an increasingly globalised and migratory world, where educational and care systems must operate across cultural and linguistic divides, the inclusive potential of AI is both urgent and undeniable.

# **Cultural and National Adaptation of Content**

Beyond linguistic translation, the project required careful cultural adaptation of its educational and artistic content. ChatGPT was employed to assess whether references, metaphors, and thematic elements embedded within presentations were suitable and intelligible for Ukrainian children experiencing war-related trauma. The AI played a key role in ensuring that materials were not only linguistically accurate but also emotionally safe and culturally resonant, thereby minimising the risk of re-traumatisation and fostering psychological trust during the workshops. It is imperative to acknowledge that many children engaged in the project had experienced significant trauma, including displacement, loss, and exposure to violence. We have to understand that even seemingly minor missteps—such as an ill-chosen chapter title or an insensitive joke during an opening speech—can provoke emotional distress or feelings of exclusion. The use of AI-supported review processes provided an additional layer of scrutiny. Our research team was able to identify and remove culturally or emotionally inappropriate elements proactively.

A concrete example illustrates this sensitivity: In the former Eastern Bloc, Russian was the standard second language taught in schools. Given the age profile of many caregivers working in residential childcare, as well as members of the research team, basic knowledge of Russian was common among the adult participants. However, a common misconception persists that Russian and Ukrainian are interchangeable languages—an assumption that is particularly problematic given the current geopolitical situation. In this regard, AI served as a critical mediator of cultural and linguistic nuance. By generating accurate and respectful materials in Ukrainian, ChatGPT helped prevent potential misunderstandings or unintended harm. We have to ask, what stronger proof of the inclusive potential of AI shall be presented? It ensured that the language of instruction, welcome speeches, and written materials aligned not only with linguistic needs but with the emotional and cultural realities of the children. We have to understand how important adequate verbal communication is. This intervention highlighted the capacity of AI to serve as a buffer against culturally insensitive content, particularly in high-stakes environments involving vulnerable populations.

# **Generation of Educational and Cultural Prompts**

Artificial intelligence played a critical role in generating tailored prompts that support the themes of workshops. These prompts were implemented throughout educational and cultural sessions to encourage reflection, storytelling, and discussion among participants. For instance, ChatGPT was prompted to create age-appropriate and culturally sensitive discussion starters and thematic activities centred on children's rights, national symbols, and ethical aspects of sport and teamwork.

A crucial advantage of this approach was its adaptability to the specific characteristics of the target group. Many of the children involved had experienced deprivation and trauma, factors frequently associated with the emergence of special educational needs. As these needs are defined and addressed differently across national systems, the AI model was instructed to generate country-specific prompts, taking into account both linguistic and educational-cultural variables. This use of AI ensured that materials aligned with the educational frameworks and expectations of participating countries while remaining accessible for each subgroup.

One of the most unexpected yet highly impactful applications of AI within the project is related to menu evaluation. Given that some of the participants were Ukrainian children evacuated from war-affected regions, cultural sensitivity extended to the catering arrangements. ChatGPT was tasked with analysing hotel menus to assess their appropriateness based on Ukrainian dietary habits and cultural norms. While this may appear marginal from a scientific standpoint, its psychosocial relevance cannot be overstated. For a displaced child in an unfamiliar environment, receiving a meal that is foreign or incompatible with one's cultural expectations can exacerbate feelings of alienation and distress. AI contributed to a climate of emotional safety and attentiveness by facilitating real-time dietary review. It identified potential culturally inappropriate dishes and supported organisers in modifying the menu accordingly. This act of cultural consideration played a subtle but crucial role in fostering trust and comfort among vulnerable participants.

## **Workshop Support: Prompt Editing and Refinement**

Throughout the educational and cultural components of the project, AI was used to refine and adapt workshop scripts and educational content. Facilitators regularly input draft materials into ChatGPT to check for clarity, linguistic accessibility, inclusivity, and cultural relevance. This iterative, AI-assisted editing was particularly beneficial when designing workshops for mixed-age groups with diverse literacy levels and varying cognitive abilities. The diversity among participating residential childcare institutions presented numerous challenges, as children differed significantly in age, intellectual development, and educational background. Managing such heterogeneity through traditional planning methods would have been exceptionally demanding. With the support of AI, facilitators could adjust content in response to real-time feedback. This immediate reaction is helpful to create sessions that remain inclusive and engaging for all.

AI proved useful in project evaluation. It enabled us to rapidly process and analyse feedback collected during and after workshops, allowing organisers to implement timely improvements. The research team unanimously agrees that without the capabilities provided by AI, the practical and ethical implementation of this international programme for children in residential childcare would have been significantly compromised.

## 6. Discussion and Interpretation of Findings

Implementation of artificial intelligence tools introduces a range of new possibilities and opportunities into the environment of residential childcare. At the same time, AI with its considerable potential also presents a number of significant challenges. In this discussion section of our article, we explore the specific areas that emerged during our research as being most strongly influenced by the use of AI. Our focus extends beyond the pedagogical advantages brought by AI to include ethical and practical considerations that surfaced as potential limitations when working with our target group. We also reflect on the recorded perspectives of educational staff. We acknowledge that this discussion addresses only a selection of key topics, while a broader range of issues related to the application of AI in residential childcare remains to be explored.

## **Personalised Education Support**

One of the most significant outcomes of the project was the demonstration of AI's potential to support personalised learning pathways for children living in residential childcare settings. These children often exhibit high variability in educational history, literacy skills, and cognitive readiness, rendering one-size-fits-all approaches pedagogically inadequate. AI tools—most notably ChatGPT—enabled facilitators to customise prompts, simplify language, and adapt instructional content in real-time, thereby meeting children at their respective levels of understanding (Zheng et al., 2023; Chernenko, 2024).

This functionality proved especially valuable in multicultural and multilingual settings, where linguistic differentiation and simplified scaffolding were necessary for ensuring effective engagement. The ability to rapidly modify learning materials in response to observed needs contributed to a more inclusive, child-centred pedagogical experience, aligning with the core principles of inclusive education (Chiu, 2024).

### Efficiency in Activity Planning and Feedback Processing

The integration of AI substantially enhanced the efficiency of planning, implementation, and evaluation of educational and cultural activities (Vieriu & Petrea, 2025). By inputting thematic prompts into ChatGPT, facilitators could generate complete workshop scenarios within minutes, a task that traditionally consumed several hours. Compared to previous projects without AI support, time savings were significant, and resources that could instead be redirected toward direct interaction and relationship-building with children.

Beyond planning, the real-time analysis supported by AI of qualitative feedback from both children and staff. Open-ended responses were clustered into emergent themes, enabling immediate adjustments to the workshop content and delivery (Ali et al., 2023; Celik et al., 2022). This form of rapid, data-informed iteration enabled facilitators to maintain high responsiveness to participant needs. During the Unity Games, for example, AI-assisted analysis revealed recurring emotional responses to specific group activities—insights that may have otherwise remained undetected—the prompt identification of such patterns allowed for evidence-based refinements in activity design and facilitation (Stárek, 2025).

# **Staff Perspectives and Ethical Considerations**

Childcare staff largely viewed AI as a complementary tool rather than a replacement for pedagogical engagement. Initial apprehensions—centred on fears of dehumanisation and the erosion of human presence—gradually gave way to a more pragmatic stance as staff observed benefits in content creation, translation, and evaluation processes, which helped them to work more effectively. Many educators noted that AI reduced administrative burdens, enabling them to devote more time to the relational and emotional dimensions of their work (Akçayır & Akçayır, 2017)

Nevertheless, ethical concerns persisted. Staff emphasised the importance of human agency in decision-making, particularly when working with vulnerable children. Some expressed concerns about the potential erosion of professional identity if reliance on automated systems becomes overly normative. These findings underscore the importance of ongoing ethical dialogue and the establishment of clear guidelines to maintain the integrity of human-centred education in residential childcare. Ultimately, the prevailing view was not of a future without educators but of a future in which educators are empowered through the thoughtful and ethically guided use of AI tools (Klimczak & Petersen, 2023; Chen et al., 2020).

# **Technological and Contextual Limitations**

Despite its considerable advantages, the deployment of AI revealed several technical and contextual limitations. Most notably, specific outputs lacked cultural nuance, mainly when translating idiomatic expressions or addressing trauma-informed content relevant to Ukrainian participants. Prompts created in English or Czech often failed to accurately capture emotional subtleties or the socio-political sensitivities required in post-conflict contexts.

Generative models occasionally defaulted to simplified or generic responses, particularly in emotionally charged scenarios. This underscores the limitations of current AI in addressing complex affective realities (Cordella & Gualdi, 2024). Linguistic challenges further compounded these shortcomings. Especially, the morphological and syntactic complexities of Slavic languages differ

The article has been submitted for peer review to the international scientific journal *BRAIN*. *Broad Research in Artificial Intelligence and Neuroscience* (ISSN 2067-3957).

significantly from English. The resulting outputs sometimes lacked semantic and cultural depth, reinforcing the need for critical human oversight.

Still, these limitations were viewed as manageable and improvable, particularly given the rapid development of multilingual and culturally adaptive AI technologies (Losbichler & Lehner, 2021; Mainzer & Kahle, 2024). As such, the project team remains optimistic that future iterations of AI systems will provide increasingly refined support for educators working in diverse and emotionally demanding environments.

#### 7. Conclusion

This article examined the innovative uses of artificial intelligence (AI) for children living in residential childcare. We had the unique opportunity to conduct research within the framework of an international project supported by the Visegrad Fund. Our focus was on how children from residential care facilities in three participating countries experienced a holistically designed program that combined sports, educational, and cultural activities. The research was grounded in a participatory action research framework, which emphasises the active involvement of the target group and the integration of theory and practice. It was demonstrated that AI technologies, when applied ethically and with respect to specific cultural and institutional contexts, can serve as highly effective tools for supporting vulnerable groups of children. In particular, we identified the strong potential of AI in the field of education.

The project underscored not only the potential of AI in implementing inclusive educational approaches but also the essential need to preserve the human dimension in caregiving. Perhaps we are old-fashioned, but we cannot imagine residential childcare without human educators and caregivers. At the same time, we cannot envision this environment without professionals who are capable of effectively employing the opportunities that AI provides. The use of technology must not lead to the dehumanisation of care; rather, it should serve as an enabling tool that allows educators to better respond to the complex needs of children.

Despite the promising outcomes of our research, we also identified several limitations. One of the most critical areas concerns language. Current AI systems still struggle with expressing emotionally complex situations, and in our target group, such situations are part of daily life. Furthermore, the institutional readiness for integrating new technologies varies widely. These findings underscore the necessity of sustained interdisciplinary collaboration among educators, technology experts, and child welfare professionals. It is essential that artificial intelligence within the domain of child protection remains a tool in the service of humanity, and not a substitute for empathetic interpersonal relationships.

Our future research projects could focus on the long-term impact of AI-supported interventions on children's development within residential care settings. It will be important to analyse systemic conditions to determine whether they are adequately and equitably structured for the implementation of AI-based tools in practice. Artificial intelligence must become a tool for inclusion and social justice. Only then can AI serve as a bridge that helps guide children in residential childcare toward a brighter future.

#### Acknowledgement

This article is based on outcomes from the project *Sport, Culture, and Education: Empowering Visegrad's Children for a Brighter Future*, project ID #22510218. The project was cofinanced by the governments of Czechia, Hungary, Poland, and Slovakia through Visegrad Grants from the International Visegrad Fund. The mission of the Fund is to advance ideas for sustainable regional cooperation in Central Europe. The authors gratefully acknowledge the generous support of the Fund, without which this inclusive and cross-border initiative would not have been possible.

The article has been submitted for peer review to the international scientific journal *BRAIN*. *Broad Research in Artificial Intelligence and Neuroscience* (ISSN 2067-3957).

#### References

- Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. *Educational Research Review*, 20, 1–11. https://doi.org/10.1016/j.edurev.2016.11.002
- Alfandari, R., & Taylor, B. J. (2023). Processes of Multiprofessional Child Protection Decision Making in Hospital Settings: Systematic Narrative Review. *Trauma, Violence, & Abuse*, 24(1), 295–312. https://doi.org/10.1177/15248380211029404
- Ali, O., Murray, P. A., Momin, M., Dwivedi, Y. K., & Malik, T. (2024). The effects of artificial intelligence applications in educational settings: Challenges and strategies. *Technological Forecasting and Social Change*, 199, 123076. https://doi.org/10.1016/j.techfore.2023.123076
- Amershi, S., Weld, D., Vorvoreanu, M., Fourney, A., Nushi, B., Collisson, P., Suh, J., Iqbal, S., Bennett, P. N., Inkpen, K., Teevan, J., Kikin-Gil, R., & Horvitz, E. (2019). Guidelines for Human-AI Interaction. *Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems*, 1–13. https://doi.org/10.1145/3290605.3300233
- Bach-Mortensen, A. M., Goodair, B., & Barlow, J. (2022). Outsourcing and children's social care: A longitudinal analysis of inspection outcomes among English children's homes and local authorities. *Social Science & Medicine*, *313*, 115323. https://doi.org/10.1016/j.socscimed.2022.115323
- Baum, F. (2006). Participatory action research. *Journal of Epidemiology & Community Health*, 60(10), 854–857. <a href="https://doi.org/10.1136/jech.2004.028662">https://doi.org/10.1136/jech.2004.028662</a>
- Boscardin, C. K., Gin, B., Golde, P. B., & Hauer, K. E. (2024). ChatGPT and Generative Artificial Intelligence for Medical Education: Potential Impact and Opportunity. *ACADEMIC MEDICINE*, 99(1), 22–27. https://doi.org/10.1097/ACM.0000000000005439
- Calheiros, M. M., & Patrício, J. N. (2014). Assessment of Needs in Residential Care: Perspectives of Youth and Professionals. *Journal of Child and Family Studies*, 23(3), 461–474. https://doi.org/10.1007/s10826-012-9702-1
- Celik, I., Dindar, M., Muukkonen, H., & Järvelä, S. (2022). The Promises and Challenges of Artificial Intelligence for Teachers: A Systematic Review of Research. *TechTrends*, 66(4), 616–630. https://doi.org/10.1007/s11528-022-00715-y
- Cordella, A., & Gualdi, F. (2024). Regulating generative AI: The limits of technology-neutral regulatory frameworks. Insights from Italy's intervention on ChatGPT. *Government Information Quarterly*, 41(4), 101982. https://doi.org/10.1016/j.giq.2024.101982
- Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed). SAGE Publications.
- Daněk, A. (2024). The Issue of Extraordinary Talent in the Residential Childcare Institution: Giftedness or Dual Exceptionality? *Pedagogika-Pedagogy*, *96*(9), 1297–1307. https://doi.org/10.53656/ped2024-9.09
- Daněk, A., Šotolová, E., & Stárek, L. (2024). The Effect of Alcoholism on the Destruction of Relationship Values. *AD ALTA: Journal of Interdisciplinary Research*, *14*(1), 212–216. <a href="https://doi.org/10.33543/j.1401.212216">https://doi.org/10.33543/j.1401.212216</a>
- Daněk, A., Šotolová, E., & Žolnová, J. (2023). Czech and Slovak Systems of Institutional Care: Different Approaches, Common Goals. *AD ALTA: Journal of Interdisciplinary Research*, 13(2), 50–54. <a href="https://doi.org/10.33543/j.1203.5054">https://doi.org/10.33543/j.1203.5054</a>
- Dawadi, S., Shrestha, S., & Giri, R. A. (2021). Mixed-Methods Research: A Discussion on its Types, Challenges, and Criticisms. *Journal of Practical Studies in Education*, *2*(2), 25–36. <a href="https://doi.org/10.46809/jpse.v2i2.20">https://doi.org/10.46809/jpse.v2i2.20</a>
- Donoso, G., Casas, F., Oyanedel, J. C., & López, M. (2021). Relationship between digital development and subjective well-being in chilean school children. *Computers & Education*, 160, 104027. https://doi.org/10.1016/j.compedu.2020.104027

The article has been submitted for peer review to the international scientific journal *BRAIN*. *Broad Research in Artificial Intelligence and Neuroscience* (ISSN 2067-3957).

- Garcia-Molsosa, M., Collet-Sabé, J., & Montserrat, C. (2021). What are the factors influencing the school functioning of children in residential care: A systematic review. *Children and Youth Services Review*, 120, Article 105740. https://doi.org/10.1016/j.childyouth.2020.105740
- Guérin, R. N., Hofmeijer, E. I. S., Kester, L. M., & Sensmeier, L. W. (2025). The Responsible Implementation of Artificial Intelligence in Childcare. In J. Bayer & C. Grimme (Eds.), *Code and Conscience* (Vol. 14400, pp. 113–133). Springer Nature Switzerland. <a href="https://doi.org/10.1007/978-3-031-52082-2">https://doi.org/10.1007/978-3-031-52082-2</a> 8
- Hamilton, D., McKechnie, J., Edgerton, E., & Wilson, C. (2021). Immersive virtual reality as a pedagogical tool in education: A systematic literature review of quantitative learning outcomes and experimental design. *Journal of Computers in Education*, 8(1), 1–32. https://doi.org/10.1007/s40692-020-00169-2
- Holmes, W., Bialik, M., & Fadel, C. (2023). Artificial intelligence in education. In C. Stückelberger & P. Duggal (Eds.), *Data ethics: Building trust: How digital technologies can serve humanity* (pp. 621–653). Globethics Publications. <a href="https://doi.org/10.58863/20.500.12424/4276068">https://doi.org/10.58863/20.500.12424/4276068</a>
- Chen, L., Chen, P., & Lin, Z. (2020). Artificial Intelligence in Education: A Review. *IEEE Access*, 8, 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510
- Chernenko, O. (2024). The Effectiveness of Integrating Artificial Intelligence into Traditional Educational Management Methods to Enhance the Educational Process Quality. *Journal of Education Culture and Society*, 15(2), 533–547. https://doi.org/10.15503/jecs2024.2.533.547
- Chiu, T. K. F. (2024). The impact of Generative AI (GenAI) on practices, policies and research direction in education: A case of ChatGPT and Midjourney. *Interactive Learning Environments*, 32(10), 6187–6203. https://doi.org/10.1080/10494820.2023.2253861
- Jayasekara, U., Maniyangama, H., Vithana, K., Weerasinghe, T., Wijekoon, J., & Panchendrarajan, R. (2022). AI-Based Child Care Parental Control System. 2022 4th International Conference on Advancements in Computing (ICAC), 120–125. https://doi.org/10.1109/ICAC57685.2022.10025332
- Jiang, T., Sun, Z., Fu, S., & Lv, Y. (2024). Human-AI interaction research agenda: A user-centered perspective. *Data and Information Management*, 8(4), 100078. https://doi.org/10.1016/j.dim.2024.100078
- Jie, A. L.X., & Kamrozzaman, N. A. (2024). The Challenges of Higher Education Students Face in Using Artificial Intelligence (AI) against Their Learning Experiences. *Open Journal of Social Sciences*, **12**, 362–387. doi: 10.4236/jss.2024.1210025.
- Kawakami, A., Sivaraman, V., Stapleton, L., Cheng, H. F., Perer, A., Wu, Z. S., Zhu, H., & Holstein, K. (2022). "Why Do I Care What's Similar?" Probing Challenges in AI-Assisted Child Welfare Decision-Making through Worker-AI Interface Design Concepts. *Designing Interactive Systems Conference*, 454–470. https://doi.org/10.1145/3532106.3533556
- Kemmis, S. (2006). Participatory action research and the public sphere. *Educational Action Research*, 14(4), 459–476. https://doi.org/10.1080/09650790600975593
- Klimczak, P., & Petersen, C., (Eds.). (2023). *AI Limits and Prospects of Artificial Intelligence* (1st ed., Vol. 4). transcript Verlag. <a href="https://doi.org/10.14361/9783839457320">https://doi.org/10.14361/9783839457320</a>
- Losbichler, H., & Lehner, O. M. (2021). Limits of artificial intelligence in controlling and the ways forward: A call for future accounting research. *Journal of Applied Accounting Research*, 22(2), 365–382. https://doi.org/10.1108/JAAR-10-2020-0207
- Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence Unleashed: An Argument for AI in Education. Pearson. URL <a href="https://oro.open.ac.uk/50104/">https://oro.open.ac.uk/50104/</a>
- Mainzer, K., & Kahle, R. (2024). *Limits of AI theoretical, practical, ethical*. Springer Berlin Heidelberg. <a href="https://doi.org/10.1007/978-3-662-68290-6">https://doi.org/10.1007/978-3-662-68290-6</a>

The article has been submitted for peer review to the international scientific journal *BRAIN*. *Broad Research in Artificial Intelligence and Neuroscience* (ISSN 2067-3957).

- McCafferty, P., Hayes, D., & McCormick, C. (2025, Feb 18). The education of children in residential care: A systematic review of the enablers and barriers of educational attainment. FigShare online repository. <a href="https://figshare.com/s/7ae743a97c8de3d1f966">https://figshare.com/s/7ae743a97c8de3d1f966</a>
- OpenAI. (2025). ChatGPT (June 2025 version) [Large language model]. https://chat.openai.com/
- Ouakili, O. E. (2025). The Impact of Artificial Intelligence (AI) on Recruitment Process. *Open Journal of Business and Management*, 13(02), 749–762. https://doi.org/10.4236/ojbm.2025.132039
- Pyett, P. (2002). Working together to reduce health inequalities reflections on a collaborative participatory approach to health research. *Australian and New Zealand Journal of Public Health*, 26(4), 332–336. https://doi.org/10.1111/j.1467-842X.2002.tb00180.x
- Schultz, M. G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L. H., Mozaffari, A., & Stadtler, S. (2021). Can deep learning beat numerical weather prediction? *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 379(2194), 20200097. https://doi.org/10.1098/rsta.2020.0097
- Stárek, L. (2025). Education of Seniors and Modern Technologies: Improving The Quality of Life in the Digital Age. Revista Educa Online, *19*(1), ISSN 1983- 2664. Retrieved from: <a href="https://revistaeducaonline.eba.ufrj.br/edi%C3%A7%C3%B5es-anteriores/2025-1/education-of-seniors-and-modern-technologies-improving-the-quality-of-life">https://revistaeducaonline.eba.ufrj.br/edi%C3%A7%C3%B5es-anteriores/2025-1/education-of-seniors-and-modern-technologies-improving-the-quality-of-life</a>
- UNESCO. (2022). Recommendation on the ethics of artificial intelligence. Retrieved from: <a href="https://unesdoc.unesco.org/notice?id=p::usmarcdef\_0000381137">https://unesdoc.unesco.org/notice?id=p::usmarcdef\_0000381137</a>
- UNICEF. (2023). Children in alternative care. Data to Strengthen Child Protection Systems and Outcomes for Children in Europe. Retrieved from: https://www.unicef.org/eca/reports/children-alternative-care
- Vieriu, A. M., & Petrea, G. (2025). The Impact of Artificial Intelligence (AI) on Students' Academic Development. *Education Sciences*, 15(3), 343. https://doi.org/10.3390/educsci15030343
- Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education where are the educators? *International Journal of Educational Technology in Higher Education*, 16(1), 39. <a href="https://doi.org/10.1186/s41239-019-0171-0">https://doi.org/10.1186/s41239-019-0171-0</a>
- Zheng, L., Niu, J., Zhong, L., & Gyasi, J. F. (2023). The effectiveness of artificial intelligence on learning achievement and learning perception: A meta-analysis. *Interactive Learning Environments*, 31(9), 5650–5664. https://doi.org/10.1080/10494820.2021.2015693